Master Theorem Decreasing Function
Example Video
Here are few proven theorems
1. (T(n)= T(n-1) + 1) = O(n)
2. (T(n)= T(n-1) + n) = O(n^2)
3. (T(n)= T(n-1) + log n) = O(nlogn)
4. T(n)=2 T(n-1)+1 = O(2^n) or
T(n)=3 T(n-1)+1 = O(3^n) or
T(n)=2T(n-1)+n = O(n*2^n)
Now master theorem can be below
T(n) = aT(n-b) + f(n)
a & b > 0, Assume f(n) = log(n)
Case 1 : a < 1
T(n) = O(f(n)) = O(logn)
Case 2 : a = 1
T(n) = O(a*f(n)) = O(alogn)
Case 3 : a > 1
T(n) = O(a^n/b * f(n)) = O(a^n/b * logn)
Comments
Post a Comment