Master Theorem Decreasing Function

 Example Video

Here are few proven theorems 

1. (T(n)= T(n-1) + 1) = O(n)

2. (T(n)= T(n-1) + n) = O(n^2)

3. (T(n)= T(n-1) + log n) = O(nlogn)

4. T(n)=2 T(n-1)+1 = O(2^n) or

T(n)=3 T(n-1)+1 = O(3^n) or

T(n)=2T(n-1)+n = O(n*2^n) 

Now master theorem can be below

T(n) = aT(n-b) + f(n)

        a & b > 0, Assume f(n) = log(n)

Case 1 : a < 1

T(n) = O(f(n)) = O(logn)

Case 2 : a = 1

T(n) = O(a*f(n)) = O(alogn)

Case 3 : a > 1

T(n) = O(a^n/b * f(n)) = O(a^n/b * logn)

Comments

Popular posts from this blog

gsutil Vs Storage Transfer Service Vs Transfer Appliance

SQL basic interview question